Всероссийская олимпиада школьников по математике и физике

Содержание:

ПРИЗЕРЫ ЗАКЛЮЧИТЕЛЬНОГО ЭТАПА ВСЕРОССИЙСКОЙ ОЛИМПИАДЫ ШКОЛЬНИКОВ ПО МАТЕМАТИКЕ (Анапа, апрель-май 1993 г.)

 

Дипломы I степени

по 9 классам получили
Борисов А. — Нижний Новгород,
Куликов М. — п. Черноголовка Московской обл.,
Норин С. — Санкт-Петербург,
Петров К. — Москва,
Сай С. — Санкт-Петербург,
Челкак Д. — Санкт- Петербург;

по 10 классам —
Бондарко М. — Санкт- Петербург,
Тарасов А. — Москва;

по 11 классам —
Вольвовский Ю. — Москва,
Панов Д. — Москва,
Поздняков А. — Санкт-Петербург,
Розенблюм Е. — Санкт- Петербург,
Федоров Р. — Москва.

 

Дипломы II степени

по 9 классам получили
Евдокимов А. — Санкт-Петербург,
Есаулова В. — Санкт-Петербург,
Козлов М. — Санкт-Петербург,
Никитин П. — Мурманск,
Рудо Е. — Санкт-Петербург,
Салихов К. — Казань;

по 10 классам —
Добринская Н. — Саратов,
Дюбина А. — Санкт-Петербург,
Карасев Р. — Долгопрудный Московской обл.
Лапунов А. — Киров,
Сенцов Ю. — Калуга,
Уткин П. — Челябинск;

по 11 классам —
Бендерский А. — Москва,
Бирюк А. — Краснодар,
Замятин В. — Киров,
Зеленов С. — Киров,
Иншаков А. — Москва,
Карепов С. — Краснодар,
Кожанов И. — Краснодар,
Кочерова А. — Долгопрудный Московской обл.,
Маркелов С. — Москва,
Миронов И. — Санкт-Петербург,
Перлин В. — Санкт-Петербург,
Пименов К. — Санкт-Петербург,
Сосыка Е. — Краснодар,
Степанов А. — Москва.

Дипломы III степени

по 9 классам получили
Буфетов А. — Москва,
Бушков С. — Киров,
Ершов М. — Москва,
Зеленский О. — Темрюк Краснодарского края,
Игнатов Ф. — Тюмень,
Кадочников П. — Псков,
Кацев И. — Санкт-Петербург,
Курбин Д. — Омск,
Островский М. — Москва,
Рожков В. — Ангарск,
Смирнов Е. — Новосибирск;

по 10 классам —
Бархударян А. — Ереван, Армения,
Богданов И. — Пермь,
Бучкина И. — Москва,
Грушевский С. — Москва,
Кондратьев М. — Санкт-Петербург,
Крупенин С. — Москва,
Матвеев М. — Санкт-Петербург,
Поладян В. — Ереван, Армения,
Рабинович М. — Санкт-Петербург,
Филиппов В. — Санкт-Петербург,
Храпай М. — Тихвин, Ленинградской обл.,
Шувалов В. — Москва;

по 11 классам —
Алексеев М. — Нижний Новгород,
Базлов Ю. — Санкт-Петербург,
Брюхов Е. — Челябинск,
Бунина Е. — Москва,
Дроздов А. — Новосибирск,
Пионтковская И. — Тула,
Порошенко Е. — Новосибирск,
Семенов К. — Саратов,
Сонкин Д. — Калуга,
Топчий А. — Омск.

Долгая дорога к успеху в математике

К призёрству на Всеросе я плавно шёл с пятого класса. Раз в неделю мы приходили на кружок и по 2-3 часа решали задачи. Достаточно найти одного хорошего преподавателя, который даст базовые знания, а дальше — практиковаться как можно больше.

Постепенно ребята из нашего маткружка стали участвовать во всевозможных олимпиадах, причём по разным предметам. Опыт олимпиад стал ключевым в моей подготовке: я меньше волновался, больше узнавал разных подходов и методов решения задач. В результате на очередную олимпиаду приходил как к себе домой. Это не значит, что я был совершенно спокоен. На заключительном этапе в 11-ом классе было трудно справиться с волнением — всё-таки это большая ответственность.

Я, например, думал, что стану историком, когда в 6 классе занял одно из первых мест в Москве по этому предмету. Но в следующем году уровень конкуренции среди «историков» серьёзно возрос, я не успел под него подстроиться, а вот в математике успел — так определился мой путь.

На протяжении всей средней и старшей школы я посещал математический кружок раз в неделю. Домашних заданий в кружке нам не задавали: мы приходили, решали, кто сколько мог. Конечно, были и обычные уроки по школьной программе, но никаких других дополнительных занятий не было. Если математики слишком много — тоже плохо, может надоесть. Я знаю нескольких ребят, в том числе трёхкратного призёра Всероса по математике, которые побеждали в олимпиадах, занимаясь только в нашем кружке.

Я становился призёром заключительного этапа Всероссийской олимпиады школьников по математике три года подряд: в 9, 10 и 11 классах. Каждый раз я оказывался в числе «средних» призёров: не приближался к победителям, но и не был «в хвосте».

Так выглядит диплом призёра заключительного этапа Всероссийской олимпиады школьников

Как подготовиться к Всероссийской олимпиаде школьников

  1. Изучите задания прошедших олимпиад. Ознакомьтесь с требованиями, научитесь видеть логику олимпиадных заданий. 
  2. Готовьтесь к конкретным этапам. Если вам предстоит региональный, не замахивайтесь на задания заключительного. Бывают случаи, когда школьник с лёгкостью решает задачи из финала, но не может пройти муниципальный этап.
  3. Участвуйте в других олимпиадах. Они помогут потренироваться и приобрести опыт.
  4. Составьте план подготовки. Равномерно распределите нагрузку, распишите всё по неделям и дням — над какой темой вы будете работать, сколько часов потратите на её изучение или повторение, а также на решение. Обязательно учитывайте, сколько времени остаётся на учёбу, увлечения и отдых. 
  5. Используйте специализированные источники для подготовки. На олимпиадных курсах «Фоксфорда» ребята углубляют знания по выбранным предметам и учатся решать конкурсные задачки. Многие курсы ведут победители Всеросса, а также члены жюри олимпиад. 

Хотите поучаствовать во Всероссе или другой школьной олимпиаде? Изучите также вот эти статьи.

  • Как готовиться к олимпиадам по истории, обществознанию и праву →
  • Как готовиться к олимпиадам по физике →
  • Как готовиться к олимпиадам по математике →
  • Как готовиться к олимпиадам по русскому языку →

Льготы для победителей и призеров. Вопросы и Ответы

Какие олимпиады могут давать льготы при поступлении в высшие учебные заведения?

Согласно действующему законодательству (порядок приёма граждан в ВУЗы, закон «Об образовании»), льготы при поступлении в ВУЗ могут быть предоставлены только победителям и призёрам заключительного этапа Всероссийской олимпиады школьников, а также победителям и призёрам олимпиад, вошедшим в Перечень олимпиад школьников на 2012-2013 учебный год.

Что даёт диплом победителя/призёра регионального (муниципального) этапа Всероссийской олимпиады школьников?

Статус победителя/призёра регионального (муниципального) этапа, при условии продолжения обладателем диплома обучения в общеобразовательном учреждении в следующем году, даёт возможность участвовать во Всероссийской олимпиаде по этому предмету с регионального (муниципального) этапа, минуя предыдущие.

Никаких льгот при поступлении в ВУЗ данный диплом не даёт.

Что даёт диплом победителя/призёра заключительного этапа Всероссийской олимпиады школьников?

Данный диплом, при наличии у его обладателя права на получение высшего образования за счёт средств бюджета Российской Федерации, даёт ему право зачисления без вступительных испытаний в ВУЗы на направления подготовки, соответствующие профилю олимпиады.

На направления подготовки, не соответствующие профилю олимпиады, результаты победителей и призёров могут быть засчитаны как наивысшие результаты вступительных испытаний по этому предмету (в случае их наличия).

Вопрос о соответствии профиля олимпиады направлению подготовки решает ученый совет Вуза.

Какие бывают льготы победителям и призёрам олимпиад из Перечня?

Льготы бывают двух видов: зачисление без экзаменов и засчитывание максимальной оценки за ЕГЭ по предмету или за дополнительное внутреннее вступительное испытание.

Кто определяет льготы по дипломам олимпиад из Перечня? Когда они будут утверждены и опубликованы? Почему ВУЗы дают разные льготы за один и тот же диплом?

Согласно приказу №285, льготы при поступлении для победителей и призёров олимпиад из Перечня предоставляются по решению вуза.

По этой причине Оргкомитет обращается к участникам, их учителям и родителям с просьбой: ВСЕ вопросы по поводу льгот адресовать НЕ Оргкомитетам олимпиад, а исключительно приемным комиссиям соответствующих факультетов интересующих Вас вузов.

Как узнать, какая олимпиада какого уровня?

В настоящий момент доступен проект приказа Министерства Образования и Науки РФ «Об установлении уровней олимпиад школьников«. В скором времени он будет подписан и опубликован в «Российской Газете».

Какие документы являются основанием для предоставления приёмной комиссией ВУЗа льготы при поступлении?

В соответствии с письмом МОН РФ, в качестве документа об олимпиаде абитуриент имеет право предоставить Диплом или Свидетельство о внесении записи в общероссийскую базу данных победителей и призёров олимпиад школьников (далее — электронная версия диплома), которое может быть верифицировано приёмными комиссиями на сайте миролимпиад.рф.

Могу ли я несколько раз воспользоваться своей льготой?

Льготой «Зачисление без вступительных экзаменов» можно воспользоваться не более одного раза независимо от того, в каком количестве олимпиад, дающих такую льготу, человек победил.

Льготой «Максимальный балл по вступительному испытанию» можно пользоваться сколько угодно раз (в том числе по дипломам, предоставляющим льготу «Зачисление без вступительных экзаменов» в другие ВУЗы).

Где взять электронную версию диплома олимпиады из Перечня?

После подписания приказа об уровнях олимпиад школьников, электронные версии дипломов будут доступны для скачивания на сайте РСОШ.

Я не могу распечатать электронную версию диплома. В дипломе неверно указаны мои ФИО или школа. Что делать?

В случае, если Ваш диплом не распечатывается или содержит ошибки, обратитесь за помощью в оргкомитет соотвествующей олимпиады или в службы РСОШ.

Как я могу получить оригинал своего диплома (не электронную версию)?

Данную информацию Вам стоит уточнить у организаторов конкретной олимпиады. Контактные данные олимпиад по праву можно найти в соответствующем разделе.

Всероссийская олимпиада школьников по физике

Во Всероссийской олимпиаде по физике участвуют школьники 7–11 классов. При этом в 7 и 8 классах присутствуют только школьный и муниципальный этапы; для семиклассников и восьмиклассников роль регионального и заключительного этапов играет олимпиада им. Дж. К. Максвелла.

В 9–11 классах Всероссийская олимпиада проводится полноформатно — в четыре этапа.

Муниципальный этап проходит в заранее установленный день. Предлагается четыре-пять задач различной степени сложности.

Региональный и заключительный этапы проходят по единой схеме: теоретический тур и экспериментальный тур. На теоретическом туре даётся пять задач, каждая оценивается в 10 баллов. Экспериментальный тур содержит два задания, каждое по 15 баллов. Таким образом, как на регионе, так и в финале школьник может набрать максимум 80 баллов.

В 2020/21 году общая сумма баллов за задания регионального этапа равнялась 100.

В следующих трёх таблицах можно посмотреть граничные баллы победителей и призёров (соответственно в 9, 10 и 11 классе) последних региональных этапов Всероссийской олимпиады по физике в Москве, а также проходные баллы на заключительный этап.

РЭ 9 класс Призёр Победитель Проходной
2020/21 30 81 71
2019/20 26 63 56
2018/19 40 75 70
2017/18 25 63 55
2016/17 30 70 64
2015/16 34 65 57
РЭ 10 класс Призёр Победитель Проходной
2020/21 40 73 66
2019/20 30 63 58
2018/19 40 66 62
2017/18 35 68 63
2016/17 30 60 53
2015/16 35 65 57
РЭ 11 класс Призёр Победитель Проходной
2020/21 40 75 57
2019/20 30 60 55
2018/19 35 66 58
2017/18 45 69 67
2016/17 30 60 56
2015/16 36 70 62

Хорошо видно, что проходной балл может значительно варьироваться от года к году, поэтому опираться на опыт прошлых лет нет никакого смысла: всё зависит только от того, как написали в этом году остальные участники. Единственный ориентир — проходной обычно на несколько баллов меньше границы победителей в Москве.

В следующей таблице приведены задания Всероссийской олимпиады по физике последних лет, в частности — все варианты предпоследнего и заключительного этапов за всю историю Всероссийской олимпиады (с 1992 года). На пересечении строки (ваш класс) и столбца (этап Всеросса) находятся ссылки на варианты. Цифры ссылки — год проведения финала олимпиады.

Отметим, что до 2009 года Всероссийская олимпиада состояла из пяти этапов: школьный, муниципальный, региональный, предпоследний (который назывался зональным до 2002 года и федеральным окружным в 2002–2008 годах) и заключительный. С целью единообразия предпоследний этап мы всегда называем региональным.

ШЭ МЭ РЭ ЗЭ
7 класс ,
,
,
,
,
,

,
,
,
,
,
,

,

8 класс ,
,
,
,
,
,

,
,
,
,
,
,

,
,

9 класс ,
,
,
,
,

,
,
,
,
,

,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

10 класс ,
,
,
,
,

,
,
,
,
,

,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

11 класс ,
,
,
,
,

,
,
,
,
,

,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

На основе классификации задач 1992–2017 годов составлены программы подготовки к региональному и заключительному этапам:

  • 9 класс;
  • 10 класс.

Чтобы успешно подготовиться к экспериментальным турам регионального и заключительного этапов, обязательно ознакомьтесь с соответствующими материалами последних лет.

  • Экспериментальный тур регионального этапа (с 2002 года).
  • Экспериментальный тур заключительного этапа (с 2000 года).

Призеры XXII Всероссийской олимпиады школьников по математике (Рязань, 18-24 апреля 1996)

Первые премии

по девятым классам получили

Бахарев Федор — Санкг-Петербург, с.ш. 239).
Дуров Николай — Санкт-Петербург, с.ш. 239;

по десятым классам —

Сун Шйаомин — Китай;

по одиннадцатым классам —

Рудо Елена — Санкт-Петербург, с.ш 239.
Норин Сергей — Санкт-Петербург, с.ш. 239.
Салихов Константин — Москва, СУНЦМГУ,
Егоров Александр — Санкт-Петербург, с.ш. 239.

Вторые премии
по девятым классам получили

Ли Цинхин — Китай.
Лебедев Алексей — Нижегородская обл., Семеновская с.ш., 8 кл.
Антонов Михаил — Омск. с.ш. 88,
Салль Александр — Санкт-Петербург, академическая гимн.,
Беленький Алексей — Санкт-Петербург, с.ш. 239,
Цэо Цин — Китай.
Чернышенко Дмитрий —
Москва, С.Ш. 57.
Дремов Владимир — Волгодонск, с.ш. 24, 7кл.,
Ладонкин Дмитрий — Кропоткин,с.ш. 3,
Растатурин Алексей — Краснодар, с.ш. 48,
Етеревский Олег — Санкт-Петербург.с.ш. 239;

Ванюшина Ольга — Санкт-Петербург, с.ш. 239.
Самойлов Борис — Ростов-на-Дону,с.ш. 33,
Карпенков Олег — Москва, с.ш. 50,
Плохое Андрей — Сургут, гимназия 1,
Симановсхий Андрей — Санкт-Петербург, с.ш. 239.
Лепчинский Михаил — Челябинск, с.ш. 31.
Малистов Алексей — Рязань, школа-лицей 52,
Лившиц Евгений — Ижевск, с.ш. 30,
Шенг Йонгдай — Китай.
Старков Константин — Санкт-Петербург. Аничков линей.
Спиридонов Антон — Киров, с.ш. 35,
Тухвебер Сергей — Брянск, лицей 1;

Потапов Владимир — п.Черноголовка Московской обл.,с.ш.2,
Макарычев Константин — Москва, с.ш. 57,
Угловой Андрей — Санкт-Петербург, с.ш. 239.
Есаулова Вероника — Санкт-Петербург.с.ш. 239.
Макарычев Юрий — Москва, с.ш. 57.
Герко Александр — Москва, с.ш. 57.
Ляховицкий Григорий — Челябинск.с.ш. 31.
Запорожец Дмитрий — Санкт-Петербург, с.ш. 239.
Эстеров Александр — Москва, с.ш. 57,
Якимова Оксана — Москва, с.ш. 57.

Третьи премии
по девятым классам получили

Любимов Андрей — Москва, с.ш. 57,
Дильман Степан — Челябинск, с.ш. 31,
Петров Виктор — Санкт-Петербург, с.ш. 239.
Плохое Андрей — Волгодонск.с.ш. 19/20,
Розенберг Антон — Санкт-Петербург, с.ш 419,
Сопкина Екатерина — Санкт-Петербург, с.ш. 239,
Водомеров Александр — Вологда. ЕМЛ,
Шаповалов Данил — Иваново, с.ш. 33.
Фахрутдинов Валентин — Челябинск, с.ш. 31,
Анно Ирина — Москва, с.ш. 57.
Маликов Олег — Ижевск, с.ш. 41;

по десятым классам —

Чернышов Сергей — Ярославль, с.ш. 33.
Хин Зонг — Китай.
Рафиков Евгений — Пермь, с.ш. 146,
Алишев Равиль — Нижнекамск, лицей.
Уздин Сергей — Санкт-Петербург,с.ш. 239,
Шатохин Евгений — Армавир, с.ш. 1,
Клепцын Виктор — Москва, с.ш. 57,
Федотовская Екатерина — Киров, с.ш. 35.
Прудников Андрей — Москва, с.ш. 57,
Юное Аркадий — Краснодар, с.ш. 90,
Тимошенко Егор — Томск,с.ш. 7,
Гинзбург Павел — Санкт-Петербург, с.ш. 239,
Мищенко Андрей — Москва, СУНЦ МГУ,
Рыбин Михаил — Санкт-Петербург, с.ш. 239;

по одиннадцатым классам —

Никитин Павел — Мурманск, гимназия 1,
Беляев Александр — Саратов. ФТЛ 1,
Буденков Александр — Нижний Новгород, с.ш. 40.
Слободяник Николай — Санкт-Петербург, с.ш. 239.
Рогожников Евгений — Калуга, с.ш. 36,
Кузнецов Евгений — Ульяновск, с.ш. 40.
Козлов Марат — Санкт-Петербург, с.ш. 239,
Сергеева Татьяна — Ижевск, лицей 41,
Еттянова Дарья — Новосибирск, с.ш. 25.

Специальными призами

жюри награждены также

 
Салихов Константин — за оригинальное решение задачи 4 (11 кл.).
Есаулова Вероника — за оригинальное решение задачи 8 (11 кл.).
Беляев Александр — за оригинальное решение задачи 4 (11 кл.).Рогожников Евгений — за оригинальное и полное решение задачи 8 (11 кл.),
Громова Ольга (Краснодар, лицей 4. 11 кл ) — за волю к победе.
Мальцев Дмитрий (Кропоткин, гимназия 3, 11 кл.) — как лучший геометр.
Попов Сергей (Таганрог, с.ш. 37, 11 кл.) — за оригинальное решение задачи 1,
Сун Шйаомин — за оригинальное решение задачи 4 (10 кл.).
Лившиц Евгений — за существенное продвижение в задаче 8 (10 кл.),
Старков Константин — за оригинальное решение задачи 7 (10 кл.),
Спиридонов Антон — за оригинальное решение задачи 4 (10 кл.).
Малистов Алексей — как достойно представивший Рязань на олимпиаде,
Чернышенко Дмитрий — за красивое решение задачи 7 (9 кл ).
Лебедев Алексей — как лучший восьмиклассник.
Губин Ярослав (Белорецк, компьютерная школа, 9 кл.) — за оригинальное решение задачи 6.
Дремов Владимир — как лучший семиклассник,
Шапченко Кирилл (Рязань, с.ш. 24, 6 кл.) — как самый юный участник олимпиады.
Антонов Михаил — приз надежды и симпатий жюри.

Подготовка к олимпиадам: младшие школьники (5–7 классы)

Две основные олимпиады для младших школьников — это Математический праздник и Турнир Архимеда. Наряду с ними готовимся к олимпиадам «Ломоносов», «Покори Воробьёвы горы!», «Высшая проба», «Курчатов», а также к школьному и муниципальному этапам Всероссийской олимпиады школьников по математике.

Группировка листков по темам во многом следует тематическому каталогу problems.ru (как наиболее удачному с моей точки зрения). Листки содержат:

  • все задачи Матпраздника с момента его появления (то есть с 1990 года);
  • все задачи Городской устной математической олимпиады для 6–7 классов с момента её появления (с 2002 года);
  • все задачи Турнира Архимеда с 2011 года;
  • задачи последних олимпиад «Покори Воробьёвы горы!», «Ломоносов», «Высшая проба» «Курчатов» и «Физтех», а также школьных и муниципальных этапов Всероссийской олимпиады школьников.

На базе этих листков создано пособие Олимпиадная математика. Задачник 6–7.

Математика вокруг нас

Друзья, оглянитесь! Вокруг нас появляется столько новых технологий и изобретений, просто невозможных без математики; навыки вычислений, умение правильно считать требует от Вас каждая хорошая профессия, не говоря уже о просто походе за покупками.

Математика – «царица наук», и это не случайно – она существует во всем.

В наше время у нас есть отличная возможность учиться и развиваться каждый день на протяжении всей жизни, поэтому математические навыки и умения улучшать и преумножать никогда не поздно!

Основоположник современной механики и физики Галилео Галилей говорил:

«Математика — это язык, на котором написана книга природы».

От познания этой великой науки можно получить неимоверное удовольствие.

Математический конкурс, безусловно, очень полезен для всех школьников, в нем отрабатывается безукоризненный подход к пониманию механики окружающего мира, улучшается логическое мышление и способность действовать, четко анализируя ситуацию. Улучшение памяти при этом является закономерным приятным последствием.

Короткий путь к призёрству по информатике

До 8 класса я был с компьютером «на вы», а потом в школу пришла новая преподавательница курса программирования, и я заинтересовался информатикой. Я понял, что не хотел бы заниматься теоретической наукой и увидел возможности применить знания на практике.

В 10 классе я и вовсе не попал на заключительный этап, зато отправился в летнюю компьютерную школу от «Московского центра непрерывного математического образования». Это стало переломным моментом в истории с информатикой. Лучший способ подкачать знания по предмету — поучаствовать в школе, где несколько недель в интенсивном режиме преподают олимпиадные основы.

На выездной школе ученики не распыляются на другие школьные предметы, нет больших перерывов — все сосредоточены на занятиях. Мой уровень значительно вырос, и эффект летней школы сказался через год — я стал призёром на Всеросе.

Хотя я занялся информатикой довольно поздно и добился успеха на олимпиаде, не советую затягивать с подготовкой. Единицы выпускников способны взять призовые места, если начали готовиться во втором полугодии 10 класса. Нужно как минимум за 2-3 года готовиться к Всероссийской олимпиаде.

Призеры XXIII Всероссийской математической олимпиады школьников (Калуга, 18–25.04.1997)

Дипломы I степени

по 9 классам получили
Поярков Алексей — Рыбинск, гимназия, 8 кл.;

по 10 классам —
Дуров Николай — Санкт-Петербург, ФМЛ 239,
Дилъман Степан — Челябинск, лицей 31,
Черепанов Евгений — Рыбинск, с.ш.17;

по 11 классам —
Уздин Сергей — Санкт-Петербург, ФМЛ 239.

Дипломы II степени

по 9 классам получили
Волк Денис — Москва, с.ш.57,
Фарутин Владимир — Санкт-Петербург, с.ш.610,
Дремов Владимир — Волгодонск, с.ш.24, 8 кл.,
Жиляев Владимир — Москва, с.ш.1543,
Петров Федор — Санкт-Петербург, ФМЛ 239,
Евсеев Антон — Москва, с.ш. 1260,
Мазин Михаил — Москва, с.ш.2,
Галкин Сергей — Москва, с.ш.2,
Горшков Алексей — Москва, с.ш.1543,
Тихомиров Сергей — Санкт-Петербург, ФМЛ 239,
Асомчик Александр — Новгород, с.ш. 117,
Певзнер Игорь — Киров, ФМЛ 35,
Хинцицкий Иван — Калуга, с.ш. 24;

по 10 классам —
Анно Ирина — Москва, с.ш.57,
Беленький Алексей — Санкт-Петербург, ФМЛ 239,
Розенберг Антон — Санкт-Петербург, ФМЛ 239,
Бахарев Федор — Санкт-Петербург, ФМЛ 239,
Сопкина Екатерина — Санкт-Петербург, ФМЛ 239,
Плахов Андрей — Волгодонск, с.ш. 19/20;

по 11 классам —
Митрофанов Михаил — Санкт-Петербург, ФМЛ 239,
Лепинский Михаил — Челябинск, лицей 31,
Мищенко Андрей — Москва, СУНЦ МГУ,
Самойлов Борис — Ростов-на-Дону, с.ш. 33,
Клепцын Виктор — Москва, с.ш. 57,
Шаповалов Данил — Иваново, с.ш. 33,
Тухвебер Сергей — Брянск, лицей 1.

Дипломы III степени

по 9 классам получили
Карвонен Максим — Рыбинск, с.ш. 2, 8 кл.,
Лебедев Алексей — с.Семеново, Уренского р-на Нижегородской обл., Семеновская с.ш.,
Лешко Денис — Ангарск, с.ш. 10,
Лифшиц Юрий — Санкт-Петербург, ФМЛ 239,
Мелещук Елизавета — Санкт-Петербург, Академическая гимназия,
Баскаков Илья — Москва, с.ш. 710,
Лузгарев Александр — Киров, ФМЛ 35,
Черников Алексей — Королев Московской обл., с.ш. 4,
Бейлин Андрей — Ростов-на-Дону, с.ш.58,
Ершов Денис — Москва, с.ш. 2,
Бабенко Максим — Саратов, ФТЛ 1,
Зинин Евгений — Краснодар, с.ш. 87,

 
Алишев Равиль — д. Кадырово Заикинского р-на, Татарстан, Татарско-турецкий лицей,
Шадрин Владимир — Киров, ФМЛ 35;

по 10 классам —
Етеревский Олег — Санкт-Петербург, ФМЛ 239,
Ткаченко Артем — Омск, с.ш. 88,
Водомеров Александр — Вологда, ВГЕМЛ,
Доценко Владимир — Москва, с.ш. 57,
Железняк Александр — Санкт-Петербург, ФМЛ 239,
Фирсова Татьяна — Саров, с.ш. 2,
Зинин Денис — Казань, ЭШЛ,
Рыбников Леонид — Москва, с.ш. 57,
Растатурин Алексей — Краснодар, с.ш. 48;

по 11 классам —
Малистов Алексей — Рязань, лицей 52,
Прудников Андрей — Москва, с.ш. 57,
Рафиков Евгений — Пермь, с.ш. 146,
Чернышев Сергей — Ярославль, с.ш. 33,
Шатохин Евгений — Армавир, гимназия 1,
Лившиц Евгений — Ижевск, с.ш. 30,
Новосельцев Андрей — Ростов-на- Дону, с.ш. 5,
Фирдман Илья — Омск, с.ш. 74,
Вашевник Андрей — Москва, с.ш. 57,
Злобин Сергей — Киров, ФМЛ 35,
Потапов Алексей — Сосновый Бор Ленинградской обл., с.ш. 8,
Спиридонов Антон — Киров, ФМЛ 35,
Петров Александр — Первоуральск, с.ш. 7,
Тимошенко Егор — Томск, с.ш. 7,
Федотовская Екатерина — Киров, ФМЛ 35.

Как внести исправления на эту страницу

Несмотря на то, что большинство этих списков взято из разных официальных публикаций,
(в том числе финальных протоколов жюри или публикаций в «Кванте»), очевидно, что
в любом длинном списке есть и прямые опечатки, и разные возможности для улучшения.
Никакого способа это собирать и делать, кроме как усилиями сообщества, не придумано.
Всякий желающий исправить опечатку, добавить своё имя (вместо инициала), поставить ссылку на свою страницу и т.п.
волен написать письмо на адрес olymp@mccme.ru

Всероссийская олимпиада школьников по математике

Во Всероссийской олимпиаде по математике участвуют школьники 4–11 классов. При этом для 4–6 классов в настоящее время проводится только школьный этап, а для 7 и 8 классов — только школьный и муниципальный этапы.

В восьмом классе роль регионального и заключительного этапов Всеросса играет олимпиада им. Леонарда Эйлера.

В 9–11 классах формат Всероссийской олимпиады становится полным — присутствуют все четыре этапа.

Муниципальный этап проходит в заранее установленный день. Предлагается пять-шесть задач различной степени сложности.

Региональный и заключительный этапы проходят по единой схеме: первый день и второй день. В каждый из этих дней предлагается по пять задач (РЭ) или по четыре задачи (ЗЭ), любая задача оценивается в семь баллов. Таким образом, максимально возможная сумма на региональном этапе Всеросса по математике составляет 70 баллов.

Посмотрите граничные баллы победителей и призёров последних региональных этапов Всероссийской олимпиады по математике, а также проходные баллы на заключительный этап.

РЭ 9 класс Призёр Победитель Проходной
2020/21 34 60 49
2019/20 35 63 48
2018/19 35 60 48
2017/18 31 56 44
РЭ 10 класс Призёр Победитель Проходной
2020/21 34 62 50
2019/20 35 60 47
2018/19 35 60 53
2017/18 40 59 53
РЭ 11 класс Призёр Победитель Проходной
2020/21 34 53 44
2019/20 35 60 51
2018/19 35 60 54
2017/18 33 54 49

В нижеследующей таблице приведены задания Всероссийской олимпиады по математике последних лет. На пересечении строки (ваш класс) и столбца (этап Всеросса) находятся ссылки на варианты. Цифры ссылки — год проведения финала олимпиады. Прочерк означает, что данный этап не проводится для школьников данного класса.

ШЭ МЭ РЭ ЗЭ
5 класс ,
,
,
,
,

,

6 класс ,
,
,
,
,

,

7 класс ,
,
,
,
,

,
,
,
,
,

8 класс ,
,
,
,
,

,
,
,
,
,

9 класс ,
,
,
,
,

,
,
,
,
,

,
,
,
,
,

,
,
,
,

10 класс ,
,
,
,
,

,
,
,
,
,

,
,
,
,
,

,
,
,
,
,

11 класс ,
,
,
,
,

,
,
,
,
,

,
,
,
,
,

,
,
,
,

Темы для подготовки к олимпиаде

Для участников разных возрастных групп (классов) предусмотрены соответствующие наборы заданий олимпиады, которые могут включать в себя задачи на следующие темы. Используйте их для подготовки и успешного решения заданий.

Олимпиада по математике 1-2 класс

  • Сложение и вычитание, счет предметов
  • Элементы комбинаторики для начальной школы
  • Продолжение числового ряда
  • Задачи с числами, решение числовых ребусов
  • Нахождение неизвестного компонента

Олимпиада по математике 3 класс

  • Использование основных арифметических действий
  • Нахождение периметра фигуры
  • Решение числового ребуса
  • Натуральные числа и десятичная запись числа
  • Продолжение числового ряда
  • Задачи с числами
  • Элементы комбинаторики для начальной школы

Олимпиада по математике 4 класс

  • Задачи на движение
  • Развитие навыков использования частей числа
  • Знание единиц измерения
  • Умножение и деление, сложение и вычитание
  • Решение числового ребуса
  • Числа, подсчет количества фигур

Олимпиада по математике 5 класс

  • Натуральные числа и шкалы
  • Сложение и вычитание натуральных чисел
  • Умножение и деление натуральных чисел
  • Периметр, площадь и объем
  • Обыкновенные дроби
  • Десятичные дроби
  • Умножение и деление десятичных дробей
  • Проценты

Олимпиада по математике 6 класс

  • Делимость натуральных чисел и признаки делимости
  • Сложение и вычитание дробей с разными знаменателями
  • Умножение и деление дробей
  • Отношения и пропорции
  • Положительные и отрицательные числа
  • Сложение и вычитание положительных и отрицательных чисел
  • Умножение и деление положительных и отрицательных чисел
  • Решение уравнений
  • Координаты на плоскости

Олимпиада по математике 7 класс

  • Математический язык и математическая модель
  • Линейная функция. График линейной функции.
  • Системы линейных уравнений
  • Одночлены. Арифметические операции над одночленами.
  • Многочлены. Арифметические операции над многочленами.
  • Разложение многочлена на множители
  • Функция y = x2
  • Начальные геометрические сведения
  • Треугольники
  • Параллельные прямые
  • Соотношения между сторонами и углами треугольника

Олимпиада по математике 8 класс

  • Алгебраические дроби
  • Функция y =  √x . Свойства квадратного корня.
  • Квадратичная функция
  • Функция y = k/x
  • Квадратные уравнения
  • Неравенства
  • Четырехугольники
  • Площадь
  • Подобные треугольники
  • Окружность

Олимпиада по математике 9-11 класс и 1-2 курс СПО

  • Задания с числами
  • Уравнения, содержащее квадратные корни
  • Нахождение области определения функций
  • Геометрические задачи
  • Текстовые задачи на смеси и сплавы
  • Элементы теории вероятности
  • Решение тригонометрических уравнений

Варианты математических олимпиад

Здесь содержатся варианты олимпиад по математике, используемые в повседневной работе. Ведь наилучший способ подготовиться к олимпиаде — это постоянно решать варианты последних лет.

Двузначное число в каждой ссылке означает год проведения финала олимпиады.

Всероссийская олимпиада школьников по математике

ШЭ МЭ РЭ ЗЭ
5 класс ,
,
,
,
,

,

6 класс ,
,
,
,
,

,

7 класс ,
,
,
,
,

,
,
,
,
,

8 класс ,
,
,
,
,

,
,
,
,
,

9 класс ,
,
,
,
,

,
,
,
,
,

,
,
,
,
,

,
,
,
,

10 класс ,
,
,
,
,

,
,
,
,
,

,
,
,
,
,

,
,
,
,
,

11 класс ,
,
,
,
,

,
,
,
,
,

,
,
,
,
,

,
,
,
,

Примечания.

  • Муниципальный этап для 5 и 6 классов начиная с 2015/16 года не проводится.
  • Региональный и заключительный этапы для 5–8 классов не предусмотрены. Вместо них проводится олимпиада им. Леонарда Эйлера (для восьмиклассников).

Олимпиада им. Леонарда Эйлера

Олимпиада им. Леонарда Эйлера («Всеросс в младшей лиге») проводится с 2008/09 года.

Регион ,
,
,
,
,
,
,
,
,
,

Финал ,
,
,
,
,
,
,
,
,
,

Олимпиада «Покори Воробьёвы горы!»

5–6 классы ,
20a,
20b,
18.1a,
18.1b,
18.2a,
18.2b,
18.3a,
18.3b17.1a,
17.1b,
17.2a,
17.2b,
17.3a,
17.3b16.1a,
16.1b,
16.2a,
16.2b,
16.3a,
16.3b
7 класс ,
20a,
20b,
18.1a,
18.1b,
18.2a,
18.2b,
18.3a,
18.3b17.1a,
17.1b,
17.2a,
17.2b,
17.3a16.1a,
16.1b,
16.2a,
16.2b,
16.3a,
16.3b
,
,
,

8 класс ,
20a,
20b,
18.1a,
18.1b,
18.2a,
18.2b,
18.3a,
18.3b17.1a,
17.1b,
17.2a,
17.2b,
17.3a16.1a,
16.1b,
16.2a,
16.2b,
16.3a,
16.3b
,
,
,

9 класс ,
20a,
20b,
18.1a,
18.1b,
18.2a,
18.2b,
18.3a,
18.3b17.1a,
17.1b,
17.2a,
17.2b,
17.3a16.1a,
16.1b,
16.2a,
16.2b,
16.3a,
16.3b
,
,
,

10–11 классы ,
20.10,
20.1119.1,
19.2,
19.3,
19.4,
19.5,
19.618.1,
18.2,
18.3,
18.4,
18.5,
18.617.1,
17.2,
17.3,
17.4,
17.516.1,
16.2,
16.3,
16.4,
16.5,
16.615.1,
15.2,
15.3,
15.4,
15.5,
15.614.1,
14.2,
14.3,
14.4,
14.5,
14.6,
14.713.1,
13.2,
13.3,
13.4,
13.5,
13.712.1,
12.2,
12.3,
12.4,
12.5,
12.6,
12.711.1,
11.2,
11.3,
11.410.1,
10.2,
10.3,
10.4,
10.5

Олимпиада «Физтех»

Онлайн Финал
5 класс ,
,

6 класс ,
,

7 класс ,
,
,

8 класс ,
,
,
,

9 класс ,
,
,
,
,
,

20.1,
20.2; 
19.1,
19.218.1,
18.2; 
17.1,
17.216.1,
16.2,
16.3
10 класс ,
,
,
,
,
,

20.1,
20.2; 
19.1,
19.218.1,
18.2; 
17.1,
17.216.1,
16.2,
16.315.1,
15.2,
15.3
11 класс ,
,
,
,
,
,

20.1,
20.2; 
19.1,
19.218.1,
18.2; 
17.1,
17.216.1,
16.2,
16.315.1,
15.2,
15.314.1,
14.2; 
13.1,
13.212.1,
12.2; 
11.1,
11.210.1,
10.2; 
09.1,
09.2; 
,

Экзамен1994 — 2008 08.1,
08.2,
08.3,
08.407.1,
07.2,
07.3,
07.406.1,
06.2,
06.3,
06.405.1,
05.2,
05.304.1,
04.2,
04.303.1,
03.2,
03.302.1,
02.2,
02.301.1,
01.2,
01.3
00.1,
00.299.1,
99.298.1,
98.297.1,
97.2,
97.396.1,
96.2,
96.395.1,
95.2,
95.394.1,
94.2,
94.3

Примечания.

  • Очный финал для 5–8 классов пока не проводится.
  • В 2016/17 и 2017/18 годах на онлайн-этапе для 5 и 6 классов давалось задание 7 класса.
  • Очный финал для 10 класса впервые прошёл в 2015 году, а для 9 класса — в 2016 году.

Письменный экзамен мехмата МГУ и ДВИ МГУ

Мехмат ,
,
,
,
,
04-03,
04-07; 
03-03,
03-05,
03-0702-03,
02-05,
02-07; 
01-03,
01-05,
01-0700-03,
00-05,
00-07; 
99-03,
99-05,
99-0798-03,
98-05,
98-07; 
97-03,
97-05,
97-0796-03,
96-05,
96-07; 
95-03,
95-05,
95-0794-05,
94-07,
93-05,
93-07
ДВИ ,
,
,
,
,
,
,

Олимпиада по математике – это важно

Термин «олимпиада» пришел к нам из Древней Греции, но в наше время приобрел новое значение, а именно трансформировался в такое понятие, как «олимпиада по математике». Такой вид конкурса умов и интеллекта становится с каждым годом все популярнее в кругу школьников.

Олимпиадные задания каждый год становятся интереснее и доступнее с появлением дистанционной формы участия. Школьники оттачивают навыки запоминания огромного количества информации, активируется скрытые способности мозга человека, ведь конкурсы по математики направлены именно на логическое мышление и использует непростые навыки вычисления и анализа.

Задачи ЕГЭ по математике

В данном разделе приведены задачи ЕГЭ по математике (профильный уровень, сложная часть), а также диагностических и тренировочных работ МИОО начиная с 2009 года. Последнее пособие («Нестандартные задачи на ЕГЭ по математике») содержит авторские решения.

  • Тригонометрические уравнения на ЕГЭ по математике
  • Стереометрия на ЕГЭ по математике
  • Алгебраические уравнения и неравенства на ЕГЭ по математике
  • Показательные уравнения и неравенства на ЕГЭ по математике
  • Логарифмические уравнения и неравенства на ЕГЭ по математике
  • Планиметрия на ЕГЭ по математике
  • Экономические задачи на ЕГЭ по математике
  • Задачи с параметрами на ЕГЭ по математике
  • Нестандартные задачи на ЕГЭ по математике

Выбор вуза: между МФТИ и НИУ ВШЭ

Я выбирал между факультетом инноваций и высоких технологий МФТИ и факультетом компьютерных наук Вышки. В обоих вузах были кафедры «Яндекса», а я мечтал поработать в этой компании. В Вышке факультет только открывался, и было непонятно, что из этого выйдет. Поэтому я послушал совета родителей и лучших друзей — «выбрать что-то проверенное» — и пошёл на Физтех.

Пожалуй, на Физтехе приходится больше ботать. Для меня это плюс, так как получается воспитательный эффект — меньшая нагрузка меня бы расслабила. Сейчас я привык много трудиться и всегда знаю, чем себя занять. В любом случае надо быть готовым к тому, что придётся работать больше, чем в школе. Свободного времени у студентов сильных вузов мало, тусовки — редкая возможность.

По моим ощущениям, Физтех — это что-то более коллективное, ВШЭ — более индивидуальное. МФТИ расположен в Долгопрудном, студенты вместе и учатся, и отдыхают — это создаёт командную атмосферу. Сначала я этого не понимал, но теперь считаю атмосферу единения главным преимуществом Физтеха.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector