Задачи с физическим смыслом

Теория к заданию 4 из ЕГЭ по математике (профильной)

Вероятностью события $А$ называется отношение числа благоприятных для $А$ исходов к числу всех
равновозможных исходов

$P(A)={m}/{n}$, где $n$ – общее количество возможных исходов, а $m$ – количество исходов, благоприятствующих событию
$А$.

Вероятность события — это число из отрезка $$

В фирме такси в наличии $50$ легковых автомобилей. $35$ из них чёрные, остальные — жёлтые.
Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета.

Решение:

Найдем количество желтых автомобилей:

$50-35=15$

Всего имеется $50$ автомобилей, то есть на вызов приедет одна из пятидесяти. Желтых автомобилей $15$,
следовательно, вероятность приезда именно желтого автомобиля равна ${15}/{50}={3}/{10}=0,3$

Ответ:$0,3$

Противоположные события

Два события называются противоположными, если в данном испытании они несовместимы и одно из них обязательно
происходит. Вероятности противоположных событий в сумме дают 1.Событие, противоположное событию $А$, записывают
${(А)}{-}$.

$Р(А)+Р{(А)}{-}=1$

Независимые события

Два события $А$ и $В$ называются независимыми, если вероятность появления каждого из них не зависит от того,
появилось другое событие или нет. В противном случае события называются зависимыми.

Вероятность произведения двух независимых событий $A$ и $B$ равна произведению этих
вероятностей:

$Р(А·В)=Р(А)·Р(В)$

Иван Иванович купил два различных лотерейных билета. Вероятность того, что выиграет первый
лотерейный билет, равна $0,15$. Вероятность того, что выиграет второй лотерейный билет, равна $0,12$. Иван Иванович
участвует в обоих розыгрышах. Считая, что розыгрыши проводятся независимо друг от друга, найдите вероятность того,
что Иван Иванович выиграет в обоих розыгрышах.

Решения:

Вероятность $Р(А)$ — выиграет первый билет.

Вероятность $Р(В)$ — выиграет второй билет.

События $А$ и $В$ – это независимые события. То есть, чтобы найти вероятность того, что они произойдут оба
события, нужно найти произведение вероятностей

$Р(А·В)=Р(А)·Р(В)$

$Р=0,15·0,12=0,018$

Ответ: $0,018$

Несовместные события

Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию
$А$, так и событию $В$. (События, которые не могут произойти одновременно)

Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих
событий:

$Р(А+В)=Р(А)+Р(В)$

На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность
того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему
«Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение:

Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения»,
ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух
несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:

$Р(А+В)=Р(А)+Р(В)$

$Р = 0,3+0,18=0,48$

Ответ: $0,48$

Совместные события

Два события называются совместными, если появление одного из них не исключает появление другого в одном и том же
испытании. В противном случае события называются несовместными.

Вероятность суммы двух совместных событий $A$ и $B$ равна сумме вероятностей этих событий минус
вероятность их произведения:

$Р(А+В)=Р(А)+Р(В)-Р(А·В)$

В холле кинотеатра два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится
кофе, равна $0,6$. Вероятность того, что кофе закончится в обоих автоматах, равна $0,32$. Найдите вероятность того,
что к концу дня кофе закончится хотя бы в одном из автоматов.

Решение:

Обозначим события, пусть:

$А$ = кофе закончится в первом автомате,

$В$ = кофе закончится во втором автомате.

Тогда,

$A·B =$ кофе закончится в обоих автоматах,

$A + B =$ кофе закончится хотя бы в одном автомате.

По условию, $P(A) = P(B) = 0,6; P(A·B) = 0,32$.

События $A$ и $B$ совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий,
уменьшенной на вероятность их произведения:

$P(A + B) = P(A) + P(B) − P(A·B) = 0,6 + 0,6 − 0,32 = 0,88$

Ответ: $0,88$

Геометрический смысл производной

Напомним, что уравнение прямой, не параллельной осям координат, можно записать в виде $y = kx + b$, где $k$ – угловой коэффициент прямой. Коэффициент $k$ равен тангенсу угла наклона между прямой и положительным направлением оси $Ох$.

$k = tgα$

Производная функции $f(x)$ в точке $х_0$ равна угловому коэффициенту $k$ касательной к графику в данной точке:

$f'(x_0) = k$

Следовательно, можем составить общее равенство:

$f'(x_0) = k = tgα$

На рисунке касательная к функции $f(x)$ возрастает, следовательно, коэффициент $k > 0$. Так как $k > 0$, то $f'(x_0) = tgα > 0$. Угол $α$ между касательной и положительным направлением $Ох$ острый.

На рисунке касательная к функции $f(x)$ убывает, следовательно, коэффициент $k < 0$, следовательно, $f'(x_0) = tgα < 0$. Угол $α$ между касательной и положительным направлением оси $Ох$ тупой.

На рисунке касательная к функции $f(x)$ параллельна оси $Ох$, следовательно, коэффициент $k = 0$, следовательно, $f'(x_0) = tg α = 0$. Точка $x_0$, в которой $f ‘(x_0) = 0$, называется экстремумом.

На рисунке изображён график функции $y=f(x)$ и касательная к этому графику, проведённая в точке с абсциссой $x_0$. Найдите значение производной функции $f(x)$ в точке $x_0$.

Решение:

Касательная к графику возрастает, следовательно, $f'(x_0) = tg α > 0$

Для того, чтобы найти $f'(x_0)$, найдем тангенс угла наклона между касательной и положительным направлением оси $Ох$. Для этого достроим касательную до треугольника $АВС$.

Найдем тангенс угла $ВАС$. (Тангенсом острого угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему катету.)

$tg BAC = {BC}/{AC} = {3}/{12}= {1}/{4}=0,25$

$f'(x_0) = tg ВАС = 0,25$

Ответ: $0,25$

Производная так же применяется для нахождения промежутков возрастания и убывания функции:

Если $f'(x) > 0$ на промежутке, то функция $f(x)$ возрастает на этом промежутке.

Если $f'(x) < 0$ на промежутке, то функция $f(x)$ убывает на этом промежутке.

На рисунке изображен график функции $y = f(x)$. Найдите среди точек $х_1,х_2,х_3…х_7$ те точки, в которых производная функции отрицательна.

В ответ запишите количество данных точек.

Решение:

Отрицательным значениям производной соответствуют интервалы, на которых функция $f (x)$ убывает. Поэтому, выделим на рисунке интервалы, на которых функция убывает.

В выделенных интервалах находятся точки $х_2, х_4$. В ответ напишем их количество $2$.

Ответ: $2$

Фоксфорд

Сайт: https://foxford.ruТелефон: +7 (495) 120-04-34, 8 (800) 500-80-11Стоимость: от 2000 р./месяц

На курсах подготовки к ЕГЭ по математике вы будете заниматься с преподавателями МГУ, ВШЭ и МФТИ, членами жюри Всероссийской олимпиады и экспертами ЕГЭ.

2 варианта занятий:

Обучение на курсе:

Продолжительность занятие на курсе — 2 часа, ДЗ проверяются автоматически. Занятия ведутся на сайте онлайн: вы видите преподавателя, можете задавать ему вопросы через чат.

К каждому уроку у вас будут готовые конспекты + доп. материалы по теме. Все материалы и видеозаписи уроков будут храниться в личном кабинете до конца учебного года.

Занятия с репетитором:

Индивидуальный подход, продолжительность занятий — до 60 минут. Обучение проходит на платформе Фоксфорд.Класс, в реальном времени.

Репетитор будет видеть, что пишет ребенок, выполняя задание, и сразу же будет давать по нему обратную связь. К каждому уроку у ученика будут готовые конспекты и домашние задания.

Для закрепления знаний:

  • Интерактивные задания
  • Онлайн-учебник
  • Систему подсказок при выполнении заданий

Отчёт об успеваемости (занятия, домашка и рейтинг в группе) формируется каждую неделю — для контроля прогресса.

Теоретические основы математики

Элементы линейной и векторной алгебры

  1. Матрицы
    1. Основные понятия о матрицах
    2. Действия над матрицами
  2. Определители
    1. Определители второго порядка и их свойства
    2. Определители третьего порядка
    3. Определители n-го порядка
  3. Обратная матрица
  4. Системы линейных уравнений
    1. Основные понятия
    2. Формулы Крамера. Матричный способ решения систем линейных уравнений
    3. Решение систем линейных уравнений методом Гаусса
  5. Элементы векторной алгебры
    1. Скалярные и векторные величины
    2. Линейные операции над векторами
    3. Угол между векторами. Проекция вектора на ось
    4. Линейная комбинация векторов. Базис
    5. Прямоугольная Декартова система координат
    6. Линейные операции над векторами, заданными в координатной форме
    7. Скалярное произведение векторов
    8. Векторное произведение векторов
    9. Смешанное произведение векторов

Учебно-методический комплекс составлен в соответствии с Государственным образовательным стандартом профессионального высшего образования РФ по дисциплине «Математика».

Квадратные уравнения

Квадратное уравнение — уравнение вида $ax^2 + bx + c = 0$, где $a, b, c$ — некоторые числа a$≠0$, $x$ — неизвестное. Перед тем как решать уравнение, необходимо раскрыть скобки и собрать все слагаемые в левой части уравнения.

Числа $a, b, c$ называются коэффициентами квадратного уравнения.

  • $a$ — старший коэффициент;
  • $b$ — средний коэффициент;
  • $c$ — свободный член.

Если в квадратном уравнении коэффициенты $b$ и $c$ не равны нулю, то уравнение называется полным квадратным уравнением. Например, уравнение $2x^2 – 8x + 3 = 0$. Если один из коэффициентов $b$ или $c$ равен нулю или оба коэффициента равны нулю, то квадратное уравнение называется неполным. Например, $5x^2 – 2x = 0$.

Решение неполных квадратных уравнений

Неполное квадратное уравнение имеет вид $ax^2 + bx = 0$, если $a$≠0$; $c$=0$. В левой части этого уравнения есть общий множитель $x$.

1. Вынесем общий множитель $x$ за скобки.

Мы получим $x (ax + b) = 0$. Произведение равно нулю, если хотя бы один из множителей равен нулю. Поэтому получаем $x = 0$ или $ax + b =0$. Таким образом, данное уравнение эквивалентно двум уравнениям:

$x = 0; ax + b = 0$

2. Решаем получившиеся уравнения каждое отдельно.

Мы получим $x = 0$ и $x={-b}/{a}$. Следовательно, данное квадратное уравнение имеет два корня $x = 0$ и $x={-b}/{a}$

$4х^2 — 5х = 0$

Вынесем х как общий множитель за скобки:

$х (4х — 5) = 0$

Приравняем каждый множитель к нулю и найдем корни уравнения.

$x = 0$ или $4х — 5 = 0$

$х_1 = 0   х_2 = 1,25$

Ответ: $х_1 = 0; х_2 = 1,25$

Неполное квадратное уравнение вида $ax^2 + c = 0, a≠0, b=0$

Для решения данного неполного квадратного уравнения выразим $x^2$.

$ax^2 + c = 0$

$ax^2 = — c$

$x_2 = {-c}/{a}$

При решении последнего уравнения возможны два случая:

если ${-c}/{a}>0$, то получаем два корня: $x = ±v{{-c}/{a}}$

если ${-c}/{a}<0$, то уравнение во множестве действительных числе не имеет решений.

$x^2 — 16 = 0$

$x^2 = 16$

$x = ±4$

Ответ: $х_1 = 4, х_2 = — 4$

Решение с помощью дискриминанта

Дискриминантом квадратного уравнения D называется выражение

$b^2 — 4ac$.

При решении уравнения с помощью дискриминанта возможны три случая:

1. $D > 0$. Тогда корни уравнения равны:

$x_{1,2}={-b±√D}/{2a}$

2. $D = 0$. В данном случае решение даёт два двукратных корня:

$x_{1}=x_{2}={-b}/{2a}$

3. $D < 0$. В этом случае уравнение не имеет корней.

$3х^2 — 11 = -8х$

Соберем все слагаемые в левую часть уравнения и расставим в порядке убывания степеней

$3х^2 + 8х — 11 = 0$

$a = 3 ,b = 8, c = — 11$

$D = b^2- 4ac = 82- 4 · 3 · (-11) = 196 = 142$

$x_{1}={-b+√D}/{2a}={-8+14}/{6}=1$

$x_{2}={-b-√D}/{2a}={-8-14}/{6}=-3{2}/{3}$

Ответ: $x_1=1, x_2=-3{2}/{3}$

Устные способы

Если сумма коэффициентов равна нулю $(а + b + c = 0)$, то $х_1= 1, х_2={с}/{а}$

$4х^2+ 3х — 7 = 0$

$4 + 3 — 7 = 0$, следовательно $х_1= 1, х_2=-{7}/{4}$

Ответ: $х_1= 1, х_2 = -{7}/{4}$

Если старший коэффициент в сумме со свободным равен среднему коэффициенту $(a + c = b)$, то $х_1= — 1, х_2=-{с}/{а}$

$5х^2+ 7х + 2 = 0$

$5 + 2 = 7$, следовательно, $х_1= -1, х_2 =-{2}/{5}$

Ответ: $х_1= -1, х_2 = -{2}/{5}$

Кубические уравнения

Для решения простых кубических уравнений необходимо обе части представить в виде основания в третьей степени. Далее извлечь кубический корень и получить простое линейное уравнение.

$(x — 3)^3 = 27$

Представим обе части как основания в третьей степени

$(x — 3)^3 = $33

Извлечем кубический корень из обеих частей

$х — 3 = 3$

Соберем известные слагаемые в правой части

$x = 6$

Ответ: $х = 6$

Дробно рациональные уравнения

Рациональное уравнение, в котором левая или правая части являются дробными выражениями, называется дробным.

Чтобы решить дробное уравнение, необходимо:

  1. найти общий знаменатель дробей, входящих в уравнение;
  2. умножить обе части уравнения на общий знаменатель;
  3. решить получившееся целое уравнение;
  4. исключить из его корней те, которые обращают в ноль общий знаменатель.

$4x + 1 — {3}/{x} = 0$

1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

$x≠0$

2. находим общий знаменатель дробей и умножаем на него обе части уравнения

$4x + 1 — {3}/{x}= 0¦· x$

$4x · x + 1 · x — {3·x}/{x} = 0$

3. решаем полученное уравнение

$4x^2 + x — 3 = 0$

Решим вторым устным способом, т.к. $а + с = b$

Тогда $х_1 = — 1, х_2 = {3}/{4}$

4. исключаем те корни, при которых общий знаменатель равен нулю В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Ответ: $х_1 = — 1, х_2 = {3}/{4}$

При решении уравнения с двумя дробями можно использовать основное свойство пропорции.

Основное свойство пропорции: Если ${a}/{b} = {c}/{d}$, то $a · d = b · c$

Как подготовиться к ЕГЭ по математике профильного уровня

Вы должны чётко понимать, для чего сдаёте ЕГЭ. Если вы претендуете на высокие баллы, тестовые задания не должны отнять у вас силы. Если вы рассчитываете сдать экзамен на 90 и более баллов, тренируйтесь решать тестовую часть за 30–40 минут. Засекайте время по таймеру и упражняйтесь с вариантами КИМов при подготовке к ЕГЭ.

Сильные школьники порой спотыкаются на первых 12 задачах, потому что привыкли решать что-то более содержательное. Досадно, когда способные ученики теряют баллы, время и силы на простых задачах. Обязательно потренируйтесь решать тестовую часть: оцените уровень сложности и научитесь не тратить на неё время.

Справившись с тестовой частью, приступаете к последним семи сложным задачам. Не пожалейте времени — 10 или даже 15 минут — внимательно прочитайте условие каждой задачи. Немного подумайте над ними и отметьте, с какими вы справитесь быстро

Не обращайте внимание на порядок задач. Прочли условие задачи с параметрами и понимаете, что решали подобную, но нужно чуть-чуть додумать — беритесь за неё

Домашние и контрольные работы по математике учат тому, что на задачу отводится 5–10 минут. Настоящие математические проблемы решаются неделями, месяцами и даже годами.

Возьмём задачу №19. Прочитайте внимательно текст задания, подумайте над ним, если нет никаких идей, отложите задачу до завтра. На следующий день снова ищите способ решения. Не отчаивайтесь, если не удалось решить задачу и со второй попытки.

Если вы решите свою первую задачу №19 за пять часов — прекрасно! Продолжайте тренироваться и усердно готовиться. Когда сможете решить её за час, вы будете готовы к сложным заданиям ЕГЭ.

Правильно считайте, применяйте знание формул, будьте внимательны, и у вас всё получится. Не бойтесь сложных заданий. Некоторые школьные учителя говорят, что последние задания слишком сложные, и не разбирают их в классе. Главное — понять, что все задачи посильны, и готовиться к ЕГЭ по математике как можно тщательнее. Любой нормально развитый человек способен понять математику, и вы — не исключение.

Examer

Сайт — examer.ru/ege_po_matematike/2021/ Длительность обучения — индивидуально. Стоимость обучения — бесплатно для самостоятельной подготовки или 2 490 рублей в режиме Турбо с видеоуроками и разбором домашних заданий.

На этом ресурсе школьники могут готовиться только к экзамену профильного уровня. На Examer нет репетиторов или уроков как таковых. Здесь есть теория для самостоятельного изучения и задания для практической отработки. Можно заниматься дома, а можно — в любом удобном месте, поскольку у ресурса есть мобильные приложения для Android и iOS.

Существенный недостаток — отсутствие разборов заданий. Если у ребенка не получается решить какую-то задачу, с проблемой он будет разбираться самостоятельно. Для этого можно почитать теоретические материалы или воспользоваться поиском в интернете. Безусловный плюс ресурса — бесплатный доступ на неограниченной время. Это прекрасная возможность для ребят из малообеспеченных семей подтянуть свои знания по математике и подготовиться к ЕГЭ.

Перед началом обучения система попросит пройти тест на определение начального уровня знаний и предполагаемого результата ЕГЭ по математике. Затем для каждого в автоматическом режиме составляется индивидуальный план подготовки. Студент проходит модули последовательно. Каждый новый урок будет открыт после успешного решения задач по предыдущему.

Важно!
В бесплатном режиме возможности системы ограничены. Максимальную эффективность дает Турбокурс, в котором предусмотрено 12 видеоуроков в месяц

Домашние задания с проверкой преподавателя, тестирование, помощь в решении трудных задач.

Дробно рациональные уравнения

  • Если дробь равна нулю, то числитель равен нулю, а знаменатель не равен нулю.
  • Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно-рациональным.

Чтобы решить дробно рациональное уравнение, необходимо:

  1. Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ)
  2. Найти общий знаменатель дробей, входящих в уравнение;
  3. Умножить обе части уравнения на общий знаменатель;
  4. Решить получившееся целое уравнение;
  5. Исключить из его корней те, которые не удовлетворяют условию ОДЗ.

Если в уравнении участвуют две дроби и числители их равные выражения, то знаменатели можно приравнять друг к другу и решить полученное уравнение, не обращая внимание на числители. НО учитывая ОДЗ всего первоначального уравнения

Тригонометрия

Пусть имеется прямоугольный треугольник:

Тогда, определение синуса:

Определение косинуса:

Определение тангенса:

Определение котангенса:

Основное тригонометрическое тождество:

Простейшие следствия из основного тригонометрического тождества:

Синус двойного угла:

Косинус двойного угла:

Тангенс двойного угла:

Котангенс двойного угла:

Тригонометрические формулы сложения

Синус суммы:

Синус разности:

Косинус суммы:

Косинус разности:

Тангенс суммы:

Тангенс разности:

Котангенс суммы:

Котангенс разности:

Тригонометрические формулы преобразования суммы в произведение

Сумма синусов:

Разность синусов:

Сумма косинусов:

Разность косинусов:

Сумма тангенсов:

Разность тангенсов:

Сумма котангенсов:

Разность котангенсов:

Произведение синусов:

Произведение синуса и косинуса:

Произведение косинусов:

Формулы понижения степени

Формула понижения степени для синуса:

Формула понижения степени для косинуса:

Формула понижения степени для тангенса:

Формула понижения степени для котангенса:

Формула половинного угла для тангенса:

Формула половинного угла для котангенса:

Формулы приведения задаются в виде таблицы:

Логарифмические уравнения

Логарифмическими уравнениями называют уравнения вида $log_{a}f(x)=log_{a}g(x)$, где $а$ – положительное число, отличное от $1$, и уравнения, сводящиеся к этому виду.

Для решения логарифмических уравнений необходимо знать свойства логарифмов: все свойства логарифмов мы будем рассматривать для $a > 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любых действительных чисел $m$ и $n$ справедливы равенства:

$log_{а}b^m=mlog_{a}b;$

$log_{a^m}b={1}/{m}log_{a}b.$

$log_{a^n}b^m={m}/{n}log_{a}b$

Пример:

$log_{3}3^{10}=10log_{3}3=10;$

$log_{5^3}7={1}/{3}log_{5}7;$

$log_{3^7}4^5={5}/{7}log_{3}4;$

2. Логарифм произведения равен сумме логарифмов по тому же основанию от каждого множителя.

$log_a(bc)=log_{a}b+log_{a}c$

3. Логарифм частного равен разности логарифмов от числителя и знаменателя по тему же основанию

$log_{a}{b}/{c}=log_{a}b-log_{a}c$

4. При умножении двух логарифмов можно поменять местами их основания

$log_{a}b∙log_{c}d=log_{c}b∙log_{a}d$, если $a, b, c$ и $d > 0, a≠1, b≠1.$

5. $c^(log_{a}b)=b^{log_{a}b}$, где $а, b, c > 0, a≠1$

6. Формула перехода к новому основанию

$log_{a}b={log_{c}b}/{log_{c}a}$

7. В частности, если необходимо поменять местами основание и подлогарифмическое выражение

$log_{a}b={1}/{log_{b}a}$

Можно выделить несколько основных видов логарифмических уравнений:

— Простейшие логарифмические уравнения: $log_{a}x=b$. Решение данного вида уравнений следует из определения логарифма, т.е. $x=a^b$ и $х > 0$

Пример:

$log_{2}x=3$

Представим обе части уравнения в виде логарифма по основанию $2$

$log_{2}x=log_{2}2^3$

Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.

$x = 8$

Ответ: $х = 8$

— Уравнения вида: $log_{a}f(x)=log_{a}g(x)$. Т.к. основания одинаковые, то приравниваем подлогарифмические выражения и учитываем ОДЗ:

$\table\{\ f(x)=g(x);\ f(x)>0;\ g(x) > 0, а > 0, а≠1;$

Пример:

$log_{3}(x^2-3x-5)=log_{3}(7-2x)$

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

$x^2-3x-5=7-2x$

Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые

$x^2-x-12=0$

$x_1=4,x_2= -3$

Проверим найденные корни по условиям $\table\{\ x^2-3x-5>0;\ 7-2x>0;$

При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень

Ответ: $х=-3$

Метод замены переменной.

В данном методе надо:

  1. Записать ОДЗ уравнения.
  2. По свойствам логарифмов добиться того, чтобы в уравнении получились одинаковые логарифмы.
  3. Заменить $log_{a}f(x)$ на любую переменную.
  4. Решить уравнение относительно новой переменной.
  5. Вернутся в п.3, подставить вместо переменной значение и получить простейшее уравнение вида: $log_{a}x=b$
  6. Решить простейшее уравнение.
  7. После нахождения корней логарифмического уравнения необходимо поставить их в п.1 и проверить условие ОДЗ.

Пример:

Решите уравнение $log_{2}√x+2log_{√x}2-3=0$

Решение:

1. Запишем ОДЗ уравнения:

$\table\{\ х>0,\text»так как стоит под знаком корня и логарифма»;\ √х≠1→х≠1;$

2. Сделаем логарифмы по основанию $2$, для этого воспользуемся во втором слагаемом правилом перехода к новому основанию:

$log_{2}√x+{2}/{log_{2}√x}-3=0$

3. Далее сделаем замену переменной $log_{2}√x=t$

4. Получим дробно — рациональное уравнение относительно переменной t

$t+{2}/{t}-3=0$

Приведем все слагаемые к общему знаменателю $t$.

${t^2+2-3t}/{t}=0$

Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.

$t^2+2-3t=0$, $t≠0$

5. Решим полученное квадратное уравнение по теореме Виета:

$t^2-3t+2=0$

$t_1=1; t_2=2$

6. Вернемся в п.3, сделаем обратную замену и получим два простых логарифмических уравнения:

$log_{2}√x=1$, $log_{2}√x=2$

Прологарифмируем правые части уравнений

$log_{2}√x=log_{2}2$, $log_{2}√x=log_{2}4$

Приравняем подлогарифмические выражения

$√x=2$, $√x=4$

Чтобы избавиться от корня, возведем обе части уравнения в квадрат

$х_1=4$, $х_2= 16$

7. Подставим корни логарифмического уравнения в п.1 и проверим условие ОДЗ.

$\{\table\ 4 >0; \4≠1;$

Первый корень удовлетворяет ОДЗ.

$\{\table\ 16 >0; \16≠1;$ Второй корень тоже удовлетворяет ОДЗ.

Ответ: $4; 16$

Уравнения вида $log_{a^2}x+log_{a}x+c=0$. Такие уравнения решаются способом введения новой переменной и переходом к обычному квадратному уравнению. После того, как корни уравнения будут найдены, надо отобрать их с учетом ОДЗ.

Физический смысл производной

Если материальная точка движется прямолинейно и ее координата изменяется в зависимости от времени по закону $x(t)$, то мгновенная скорость данной точки равна производной функции.

$v(t) = x'(t)$

Точка движется по координатной прямой согласно закону $x(t)= 1,5t^2-3t + 7$, где $x(t)$ — координата в момент времени $t$. В какой момент времени скорость точки будет равна $12$?

Решение:

1. Скорость – это производная от $x(t)$, поэтому найдем производную заданной функции

$v(t) = x'(t) = 1,5·2t -3 = 3t -3$

2. Чтобы найти, в какой момент времени $t$ скорость была равна $12$, составим и решим уравнение:

$3t-3 = 12$

$3t = 15$

$t = 5$

Ответ: $5$

«Хоксвард»

Сайт: https://www.hoxward.ruТелефон: +7 499 992 2510Стоимость: пробный урок — бесплатно, от 2490 р./мес.

На курсе подготовки к ЕГЭ по математике дается вся необходимая информацию и материалы, чтобы сдать экзамен на высокий балл. Преподаватель интересно объясняет свой предмет и постоянно работает с учениками. Он и сам сдал ЕГЭ на 98 баллов, поэтому точно знает, что к чему.

Два формата подготовки:

«Курс на Сотку ЕГЭ»

  • 12-16 занятий каждый месяц, ~140 р./час
  • Онлайн-занятия в группе до 30 человек
  • Домашняя работа + проверка
  • Связь с преподавателем 24/7
  • Наставник, который следит за ходом обучения и помогает по любым вопросам

Результат: знание всего материала и умение решать типовые задачи ЕГЭ.

«Курс на Сотку PRO»

  • 12-16 занятий каждый месяц, ~225 р./час
  • Включает в себя все то же, что и обычный курс на сотку
  • Личный куратор, который помогает закрывать пробелы и сопровождает на протяжении всей подготовки

Результат: более углубленное знание всего материала и умение решать типовые задачи ЕГЭ.

Принцип 1. «Заложите крепкий фундамент»

Бесконечно жаль тратить время и так очень коротких занятий на отработку простейших, элементарных навыков, но именно они — залог будущего успеха ваших учеников! Парадокс состоит в том, что чем больше времени мы потратим на освоение базового набора знаний, тем больше мы его впоследствии сэкономим при решении более сложных заданий. Например, я всегда очень долго и кропотливо учу ребят решать элементарные тригонометрические уравнения, доводя их навыки до автоматизма. Но как только этот с материал станет понятнее, чем дважды два, мы с фантастической скоростью разбираем методы решения более сложных задач. И здесь открывается настоящий простор для экономии времени, как за счет скорости работы с простейшими заданиями, которые всегда встречаются «внутри» сложных, так и за счет возможности разбирать исключительно методы, оставляя их техническую реализацию на дом. 

У данного принципа есть и еще одна положительная черта: ребята не только набивают руку, но и приобретают уверенность в себе, своих знаниях и силах, перестают считать себя гуманитариями и начинают действительно понимать предмет. 

С чего начать

Репетиторы советуют не начинать с массового решения тренировочных тестов. К ним надо относиться, как к способу «измерить» свою готовность, не более. Прорешали один тест, получилась «двойка» — есть четкое понимание, что работать надо по каждой теме. Отработали с десяток тем — можно пробовать еще один тест. Получилось лучше? Значит, двигаетесь в правильном направлении.

Как грамотно распланировать время

В плане распределения времени многое зависит от фактической готовности ученика. Повторимся, нулевые знания к 11 классу — это невозможно. Что-то в голове из пройденного в классе точно осталось. Нужно понять, что, а потом двигаться от простых заданий к сложным задачам:

  • посвятите первую треть оставшегося времени повторению теории и изучению формул по кодификатору по математике профильного уровня;
  • еще треть времени — на решение задач, специалисты советуют быстро «проскочить» первую часть (повторяем уравнения, систему координат, производные, логарифмы, степени и 2 формулы теории вероятностей), а потом переходить ко второй;
  • начните с текстовых задач попроще — № 13, 15 (алгебра — логарифмы и тригонометрические формулы), 17 (неравенства);
  • если все получается, можно переходить к пугающим задачам № 14,16 (геометрия);
  • последнюю треть времени стоит посвятить самой сложной паре — подготовке к задачам из ЕГЭ под № 18 и 19.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector