Электричество и магнетизм
Содержание:
- TutorOnline.ru
- Задания базового уровня сложности на 1 балл
- Тепловые явления
- Молекулярная физика и термодинамика
- План подготовки к ОГЭ по физике
- Бесплатно
- TutorOnline
- «СОТКА»
- ЕГЭ-студия
- § 6. Квантовая физика
- Работайте с буквами, а не цифрами
- УНПК МФТИ
- Распределение заданий по разделам курса физики
- Оптика
- Квантовая физика и элементы астрофизики
- Основные теоретические сведения
- Спутники планет Солнечной системы
- «Турбоподготовка»
- Можно ли подготовиться к ЕГЭ по физике самостоятельно
TutorOnline.ru
Подготовка к ЕГЭ по физике: в группах онлайн за 30 занятий. Курс повторяет структуру ЕГЭ, содержит все задачи и формулы, с которыми вы можете столкнуться при сдаче экзамена. Научитесь правильно распределять время и повысите свою результативность.
Программа курса
Занятие 1: Типы движения
Занятие 2: Механика
Занятие 3: Молекулярная физика
Занятие 4: Термодинамика
Занятие 5: Молекулярная физика и термодинамика, сложные задачи
Занятие 6: Электрические явления. Электростатика
Занятие 7: Электрические явления. Электродинамика
Занятие 8: Электромагнитные явления
Занятие 9: Электромагнитные явления, сложные задачи
Занятие 10: Задачи по геометрической оптике
Занятие 11: Задачи по геометрической оптике из второй части ЕГЭ
Занятие 12: Задачи на механические колебания и волны
Занятие 13: Задачи на механические колебания и волны из второй части ЕГЭ
Занятие 14: Задачи по астрономии. Необходимый минимум знаний
Занятие 15: Квантовые эффекты
Занятие 16: Квантовые эффекты из второй части ЕГЭ
Занятие 17: Атомная и ядерная физика
Занятие 18: Атомная и ядерная физика из второй части ЕГЭ
Занятие 19: Качественная задача №27 в ЕГЭ. Формат и особенности подхода к решению
Занятие 20: Задача №28 в ЕГЭ
Занятие 21: Задача №29 в ЕГЭ
Занятие 22: Задача №30 в ЕГЭ
Занятие 23: Задача №31 в ЕГЭ. Электродинамика
Занятие 24: Задача №32 в ЕГЭ. Квантовая физика
Занятие 25: Итоговое занятие по базовой теории
Занятие 26: Астрономия. Вся теория
Занятие 27: Разбираем демовариант 2022 года
Занятие 28: Разбираем ЕГЭ 2021 года
Занятие 29: Разбираем ЕГЭ 2020 года
Занятие 30: Итоговое занятие
Как проходит обучение:
- Каждую среду в 18:00 (МСК) на онлайн-платформе TutorOnline
- 29 занятий по 2 академических часа
- Совместный разбор теории и практики
- Диалог между учеником и преподавателем в реальном времени
- Закрепление знаний с помощью домашнего задания
Задания базового уровня сложности на 1 балл
Здесь выпускнику предлагается решить несложные задания в одно или два действия. В этих заданиях проверяется знание теории, формул, законов, а также умение применять алгоритмы и работать с графиками.
В этих задачах часто ошибаются в размерностях. Например, просят привести ответ в килоджоулях, а ученики пишут в джоулях, теряя на этом балл
Обращайте внимание на требуемую размерность ответа и не забывайте переводить величины в СИ
А теперь разберем конкретные примеры.
Пример № 1: Механика
Важно знать законы!
Это типичная задача по механике на 1 балл. Здесь мы вспоминаем про закон сохранения энергии: кинетическая энергия движения шайбы внизу будет равна потенциальной энергии шайбы на высоте h.
Заметим, что масса шайбы дана нам в граммах, а ответ нужно привести в метрах. Поэтому переведем в граммы в килограммы и получим заветный правильный ответ.
Пример № 2: Молекулярная физика
Важно знать алгоритмы!
В этой задаче одними формулами и законами не обойтись. Мои ученики всегда удивляются, насколько простыми становятся задания, если использовать алгоритм.
В молекулярной физике в заданиях на наименьшее и наибольшее значение всегда следует действовать по алгоритму:
- Записать уравнение Менделеева-Клапейрона
- Переписать уравнение в формате: величина по вертикальной оси = коэффициент * величину по горизонтальной оси.
- Проанализировать коэффициент k, который является углом наклона прямой.
Если числитель маленький или знаменатель большой, то коэффициент должен быть маленьким.
Если числитель большой или знаменатель маленький, то коэффициент должен быть большим.
В нашей задаче спрашивают про наименьшее значение объема. Перенесем объем в правую часть уравнения и проанализируем коэффициент.
Маленький объем V => маленький знаменатель => большая дробь => большой коэффициент => большой угол наклона.
Тепловые явления
Молекулярная физика
Средняя кинетическая энергия молекул | `bar E_к=3/2kT` | Здесь и далее рассматриваем только идеальный одноатомный газ |
Давление газа: | `p=nkT` | |
Уравнение Менделеева-Клайперона: | `pV=nuRT` | |
Количество вещества в молях: | `nu=m/M=N/N_A` | M — молярная масса, берём её из таблицы Менделеева, не забываем переводить в кг/моль |
Внутренняя энергия: | `U=3/2nuRT` | |
Закон Дальтона для смеси: | `p=p_1+p_2+…` | |
Относительная влажность: | `varphi=p_(парц)/p_(насыщ)=rho_(парц)/rho_(насыщ)` | См. также таблицу давления и плотности насыщенного водяного пара |
Уравнение теплобаланса: | `Q_1+Q_2+Q_3+…=0` | `Q>0` в процессах, где теплота выделяется, и `Q |
Термодинамика
`Q=cmDeltaT` | где `с` — удельная теплоёмкость |
`Q=lambdam` | где `lambda` — удельная теплота плавления |
`Q=rm` | где `r` — удельная теплота парообразования |
`Q=qm` | где `q` — удельная теплота сгорания |
Первое начало термодинамики: | `Q=DeltaU+A` | |
Работа газа в любом термодинамическом процессе — это площадь под pV-графиком | `A=int_1^2pdV`(формулу запоминать не обязательно) | |
Работа в изобарном процессе: | `A=p*DeltaV` | |
Работа газа всегда связана с изменением объёма: | `Vuarr rArr A>0«Vdarr rArr A`V=const rArr A=0` | |
Работа внешних сил над газом: | `A_(внеш.сил)=-A_(газа)` | |
КПД: | `eta=A_(цикл)/Q_н=(Q_н-Q_х)/Q_н` | |
Машина Карно: | `eta=(T_н-T_х)/T_н` |
Молекулярная физика и термодинамика
Молекулярная физика
Средняя кинетическая энергия молекул | `bar E_к=3/2kT` | Здесь и далее рассматриваем только идеальный одноатомный газ |
Давление газа: | `p=nkT` | |
Уравнение Менделеева-Клайперона: | `pV=nuRT` | |
Количество вещества в молях: | `nu=m/M=N/N_A` | M — молярная масса, берём её из таблицы Менделеева, не забываем переводить в кг/моль |
Внутренняя энергия: | `U=3/2nuRT` | |
Закон Дальтона для смеси: | `p=p_1+p_2+…` | |
Относительная влажность: | `varphi=p_(парц)/p_(насыщ)=rho_(парц)/rho_(насыщ)` | См. также таблицу давления и плотности насыщенного водяного пара |
Уравнение теплобаланса: | `Q_1+Q_2+Q_3+…=0` | `Q>0` в процессах, где теплота выделяется, и `Q |
Термодинамика
`Q=cmDeltaT` | где `с` — удельная теплоёмкость |
`Q=lambdam` | где `lambda` — удельная теплота плавления |
`Q=rm` | где `r` — удельная теплота парообразования |
`Q=qm` | где `q` — удельная теплота сгорания |
Первое начало термодинамики: | `Q=DeltaU+A` | |
Работа газа в любом термодинамическом процессе — это площадь под pV-графиком | `A=int_1^2pdV`(формулу запоминать не обязательно) | |
Работа в изобарном процессе: | `A=p*DeltaV` | |
Работа газа всегда связана с изменением объёма: | `Vuarr rArr A>0«Vdarr rArr A`V=const rArr A=0` | |
Работа внешних сил над газом: | `A_(внеш.сил)=-A_(газа)` | |
КПД: | `eta=A_(цикл)/Q_н=(Q_н-Q_х)/Q_н` | |
Машина Карно: | `eta=(T_н-T_х)/T_н` |
План подготовки к ОГЭ по физике
Чтобы подготовиться к ОГЭ по физике, необходимо следовать определенной последовательности действий.
Во-первых, распределите подготовку по времени в соответствии с кодификатором и своими знаниями: темы проходятся по порядку, а количество времени, которое стоит затратить на то, чтобы подготовиться к ОГЭ по физике в рамках этого раздела, зависит от его обширности и вашего умения ориентироваться в заданиях по теме.
Во-вторых, отрабатывайте каждую изученную формулу и тему на практике. Лучше всего подходит решение задач трех уровней сложностей: базовый и повышенный с кратким ответом и высокий с развернутым. Не забывайте читать тексты с экзаменов прошлых лет и описания физических явлений.
В-третьих, особое внимание уделите темам, которые изучались в предыдущих классах. Они могли подзабыться, а потому вам может потребоваться больше времени на их изучение
Проверить, нужно ли вам подготовиться к ОГЭ по физике в рамках какой-то определенной темы, можно с помощью решения тестовых заданий и полноценных вариантов: чем больше номеров вы выполните, тем легче будет заметить свои проблемные места.
Бесплатно
ЕГЭ.рф
Сайт: https://егэ.рф
Платформа сотрудничает с ФИПИ, поэтому здесь вы можете пройти пробный ЕГЭ по физике на реальном варианте этого года. Первая часть экзаменов будет проверена сразу после сдачи — автоматически. Это бесплатно.
Платно доступна проверка от экспертов ЕГЭ — детальный разбор ошибок во второй части экзамена. Стоит 500 р. без комментариев эксперта или 1000 р. с развернутыми комментариями.
«АКАДЕМИЯ IT»
Сайт: https://academiait.ru
Бесплатный и доступный онлайн-курс «ЕГЭ по физике», в котором разбираются базовые темы. В курс входит 36 уроков. Это материалы прошлых лет, но для изучения и повторения теории вполне годится.
«4ЕГЭ»
Сайт: https://4ege.ru
Здесь вы найдете различные материалы:
- Видео по теоретическим вопросам физики
- Видео-разборы отдельных заданий из ЕГЭ
- Видео-разборы типичных ошибок на ЕГЭ по физике
- Лекции по отдельным темам
- Шпаргалки, чек-листы, конспекты для подготовки к ЕГЭ
«Синергия»
Сайт: https://synergy.ru
Готовьтесь к выпускному экзамену по физике, не теряя времени на поиски актуальных материалов.
На сайте собрана теория для подготовки к ЕГЭ по физике. Файлы разделены по вопросам экзаменационного листа. Информация подана схематически и с графиками, важные определения выделены шрифтом. Все формулы, которые нужно знать для успешного прохождения испытания, — в отдельном файле.
В разделе с практикой — простые и сложные задания из материалов ФИПИ на 2021 учебный год с ответами и подробным разбором. Здесь же есть демоверсия 2021 года, кодификатор и спецификация. Те, кто планирует получить самый высокий балл, могут поработать и с примерами прошлогодних тестов. Они с решениями тоже есть на сайте.
«РешуЕГЭ»
Сайт: https://phys-ege.sdamgia.ru
Сайт-тренажер, где можно практиковаться в решении тестовой части и заданий с развернутым ответом. Новые варианты генерируются каждый месяц. А чтобы потренироваться в решении заданий по определенной «физической» теме, вы можете легко сформировать собственный вариант из заданий каталога.
Яндекс.Репетитор
Сайт: https://yandex.ru
На сайт загружено 14 видео по теории физики и решению задач в формате ЕГЭ. Также здесь собраны варианты заданий, которые очень похожи на те, что используются на ЕГЭ. Их составляют эксперты, в том числе авторы «СтатГрада». Каталог заданий обновляется каждую неделю.
«Физика ЕГЭ и ОГЭ — Владислав Карибьянц»
Сайт: https://www.youtube.com
В плейлисте «Физика ЕГЭ 2021» вы найдете 48+ видео с разбором типовых задач по отдельным темам ЕГЭ, демоверсий и прочих тренировочных вариантов. Канал ведет репетитор с 29+ летним стажем, кандидат физ-мат наук.
Timetostudy Сourses
Сайт: https://www.youtube.com
В плейлисте собрано 18 видеоуроков по физике, которые охватывают все темы школьной программы за 7-11 класс. Они будут особенно полезны тем, кто готовится к ЕГЭ. Это материалы прошлых лет, но разобраться в теории помогут и сейчас.
TutorOnline
Сайт — www.tutoronline.ru/kursy-po-fizike/podgotovka-k-ege-po-fizike Длительность обучения — 29 уроков. Стоимость обучения — 7 790 рублей единовременно или 2 390 руб. в месяц.
Преподаватель курса подготовки к ЕШЭ по физике — профессиональный преподаватель со стажем работы больше 15 лет. Педагог много лет ведет блог на YouTube, где простым и понятным языком объясняет подписчикам самые сложные темы школьного курса физики.
Преимущества подготовки в TutorOnline:
- уроки в реальном времени;
- еженедельные занятия по 1,5 часа;
- чат для общения с преподавателем;
- домашние задания с проверкой;
- доступ к записям уроков.
«СОТКА»
Сайт: ; https://vk.comСтоимость: от 2950 р./мес.
Самая рекомендуемая онлайн-школа подготовки к ЕГЭ и ОГЭ в России. 237 стобалльников в 2020 году.
Подготовка к ЕГЭ по физике — это месячный курс, где ты пройдешь все темы с самого начала, делая упор на практику.
Есть 3 тарифа, в них входит:
КМС — Экстра Лайт
- 12 онлайн-занятий + доступ к записи с тайм-кодами
- Инновационная платформа
- Авторские полезные материалы
- Ментор, курирующий тебя и твою группу
- Входной и итоговый тест
КМС — Экстра Стандарт
Лайт плюс:
- Экспертный вебинар с коучем
- Вебинар от психолога
- Квест — тест сложных заданий
- 2 пробных варианта ЕГЭ
- Гайд по оформлению второй части
КМС — Экстра Про
Стандарт плюс:
- Зачёт по пройденному материалу
- Вебинар по практике сложных заданий ЕГЭ
- Онлайн-тренажёр по всем темам ЕГЭ
ЕГЭ-студия
Сайт — ege-study.ru/fizika-online/ Длительность обучения — 12 месяцев. Стоимость обучения — 5 990 рублей.
Автор курса — Вадим Муранов — преподаватель физики с 24-летним стажем работы и победитель конкурса «Учитель года». Вадим Александрович еще и лучший репетитор Москвы. Его слушатели сдают ЕГЭ по физике на 85+ баллов.
Преимущества обучения в ЕГЭ-студии:
- разбор теории и задач всех разделов физики, входящих в единый государственный экзамен;
- 60 тем и больше 1 000 заданий;
- уроки с домашними работами и проверкой преподавателя;
- ежемесячно — пробный ЕГЭ с полным видеоразбором;
- 45 мастер-классов;
- тренажер для отработки навыка решения задач;
- оформление решений на бланках ЕГЭ.
§ 6. Квантовая физика
6.1. Основные понятия и законы квантовой физики
Фотоэффектомкрасной границей фотоэффектаУравнение Эйнштейна для фотоэффекта имеет вид:Постулаты Бора:1) электроны движутся в атоме по стационарным орбитам, на которых они обладают энергией, но энергии не излучают2) переходя с одной стационарной орбиты на другую, электрон испускает или поглощает квант электромагнитной энергии, чья энергия пропорциональна частоте:
6.2. Основные понятия и законы ядерной физики
ядро атомапротонов и нейтронов.массовым числомэнергией связидефектом массpnрадиоактивность.α-, β- и γ- лучами.α-β-γ-γ-β-α-α-, β- и γ-α-β-правило смещенияα-β--1β-γ-α-β-
Работайте с буквами, а не цифрами
Оформление задач, у которых проверяется решение, должно иметь результат в виде большой формулы с буквами. Возьмите за правило не подставлять числа до последнего шага.
В чём реальная польза букв?
- Точность. Если разделить на калькуляторе 1 на 3, а потом умножить на 6, то получится не 2, а 1,999999998. В ЕГЭ часто ответы получаются красивыми, поэтому дробь с периодом может вызвать лишние сомнения и расфокусировку.
- Возможность проверить размерность. Да-да, так просили делать в 7-м классе. 2 минуты на проверку размерности – выгодное вложение времени для увеличения вероятности правильного ответа большой задачи.
- Экономия времени. Если ответ получился в виде дроби, то она может сократиться. Это реальная экономия времени на подсчёт численного ответа.
УНПК МФТИ
Подготовительные курсы УНПК МФТИ уже более 27 лет готовят учеников для поступления в лучшие ВУЗы страны. По физике проводится курс онлайн-подготовки к ЕГЭ.
Преподаватели — эксперты ЕГЭ и члены жюри Всероссийских олимпиад. Они развивают глубокое понимание предмета вместо нарешивания тестов и обучают по программе с интегральным межпредметным взаимодействием.
В семестр вас ждет 20 занятий по 3 ак.ч. 1 или 2 раза в неделю. При записи на курс каждый школьник проходит распределительное тестирование.
В процессе обучения производится непрерывный сбор результатов и контроль прогресса обучения. Все эти данные доступны в личном кабинете ученику и родителю.
Распределение заданий по разделам курса физики
Разработчики контрольно-измерительных материалов ориентируются на школьную программу и включают в них задания из всех пройденных разделов физики. Количество упражнений чаще всего зависит от объема материала, количества изученных тем и времени, затраченного на их освоение. Таблица ниже демонстрирует, как представлены разные разделы дисциплины в КИМ.
Раздел физики | Число заданий | ||
---|---|---|---|
Вся работа | Первая часть | Вторая часть | |
Механика | 9–11 | 7–9 | 2 |
Молекулярная физика | 7–8 | 5–6 | 2 |
Электродинамика | 9–11 | 6–8 | 3 |
Квантовая физика и элементы астрофизики | 5–6 | 4–5 | 1 |
Всего | 32 | 24 | 8 |
Если говорить о том, что требуется от учащихся для выполнения тех или иных заданий, то здесь ситуация выглядит так:
- на проверку знания и понимания основных физических законов, величин, постулатов, понятий и принципов направлено 11 упражнений из первой части;
- еще 11 заданий из первой части предполагают умение участников ЕГЭ описывать и объяснять свойства тел, физические явления и результаты экспериментов, а также приводить конкретные примеры использования знаний по физике на практике;
- 2 упражнения первой части посвящены способности отличать научную гипотезу от теории, а также умению делать правильные выводы из проведенного эксперимента;
- все 8 заданий второй части КИМ направлены на умение решать физические задачи;
- в некоторых вариантах также может быть задание на способность применить полученные умения и знания в жизни.
В экзаменационную работу включают вопросы с разным уровнем сложности. 21 задание базового уровня трудности – на проверку владения основными понятиями и законами. 7 усложненных упражнений, помимо основных теоретических понятий, требуют умения решать задачи с использованием 1-2 основных понятий по физике из конкретной темы. Для выполнения 4 наиболее трудных заданий участнику необходимо знать все формулы по физике для ЕГЭ, поскольку эти задачи находятся на стыке двух, а то и трех разделов дисциплины.
Оптика
Прохождение границы двух сред:
Закон отражения: | `alpha=gamma` | |
Показатель преломления: | `n=c/v` | |
Закон преломления: | `sinalpha/sinbeta=n_2/n_1` | |
`nu_1=nu_2` | ||
`n_1lambda_1=n_2lambda_2` |
Линзы:
Оптическая сила линзы: | `D=1/F` | где F — фокусное расстояние |
Формула тонкой линзы: | `1/F=1/d+1/f` | где d — расстояние от линзы до предмета, f — от линзы до изображения |
Каждое слагаемое может входить в формулу со знаком плюс или минус:`+1/F` для собирающей линзы`-1/F` для рассеивающей линзы `+1/d` для действительного предмета`-1/d` для мнимого предмета (построенного другой оптической системой)`+1/f` для действительного изображения`-1/f` для мнимого изображения |
||
Линейное увеличение: | `Г=h/H=f/d` | где H — высота предмета, h — высота изображения |
Волновая оптика:
Условие максимумов интерференции: | `Deltad=klambda, kinZZ` |
Условие минимумов интерференции: | `Deltad=(2k+1)lambda/2, kinZZ` |
Формула дифракционной решётки: | `dsinvarphi=klambda, kinZZ` |
Квантовая физика и элементы астрофизики
Наиболее трудна для понимания старшеклассниками квантовая физика, изучающая квантовую теорию поля, квантовую механику и математическое описание процессов. Разрабатываться это направление начало только в XX веке, благодаря работам Эйнштейна, Планка, Шредингера, Гейзенберга и других ученых. В школьной программе оно занимает не так много места, как другие разделы, поэтому количество заданий по квантовой физике несколько меньше.
Остановимся на некоторых элементах содержания, которые необходимо знать, чтобы успешно пройти испытание.
Подраздел | Элементы содержания |
---|---|
Корпускулярно-волновой дуализм |
Гипотеза и формула Планка. Фотон, его энергия и импульс. Фотоэффект, уравнение Эйнштейна. Волны де Бройля. Дифракция электронов. Давление света. |
Физика атома |
Модель атома. Работы Бора. Фотоны, их поглощение и излучение. Линейчатые спектры. Лазер. |
Физика атомного ядра |
Массовое число и заряд ядра. Изотопы. Ядерные силы. Радиоактивность и радиоактивный распад. Гамма-излучение. Ядерные реакции. |
Элементы астрофизики |
Строение Солнечной системы. Характеристики звезд и наука об их происхождении. Галактики. Вселенная, ее масштабы и эволюция. |
В экзаменационной работе квантовой физике и астрофизике посвящены задания №19–21 и №24 первой части. Задачи №26, 27 и 32 основаны на знании школьниками нескольких разделов: кроме квантовой физики, еще механики и электродинамики. Основные формулы, имеющие отношение к этой теме, вынесены в отдельную таблицу кодификатора.
Изучения одной теории по физике для подготовки к ЕГЭ недостаточно, нужно еще применять эти знания на практике, поэтому важную роль играет умение решать задачи. Участники должны быть способны анализировать графики и таблицы, интерпретировать результаты экспериментов, выявлять соответствия, разбираться в изменении физических величин в процессах.
Перед выпускниками школ с хорошим знанием физики и высоким баллом ЕГЭ открываются неплохие перспективы дальнейшего образования. А талантливый студент или аспирант вполне может трудоустроиться в крупную компанию и в полной мере реализовать свой потенциал.
Основные теоретические сведения
Импульс тела
Импульсом (количеством движения) тела называют физическую векторную величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р. Импульс тела равен произведению массы тела на его скорость, т.е. он рассчитывается по формуле:
Направление вектора импульса совпадает с направлением вектора скорости тела (направлен по касательной к траектории). Единица измерения импульса – кг∙м/с.
Изменение импульса одного тела находится по формуле (обратите внимание, что разность конечного и начального импульсов векторная):
где: pн – импульс тела в начальный момент времени, pк – в конечный. Главное не путать два последних понятия.
Абсолютно упругий удар – абстрактная модель соударения, при которой не учитываются потери энергии на трение, деформацию, и т.п. Никакие другие взаимодействия, кроме непосредственного контакта, не учитываются. При абсолютно упругом ударе о закрепленную поверхность скорость объекта после удара по модулю равна скорости объекта до удара, то есть величина импульса не меняется. Может поменяться только его направление. При этом угол падения равен углу отражения.
Абсолютно неупругий удар – удар, в результате которого тела соединяются и продолжают дальнейшее своё движение как единое тело. Например, пластилиновый шарик при падении на любую поверхность полностью прекращает свое движение, при столкновении двух вагонов срабатывает автосцепка и они так же продолжают двигаться дальше вместе.
Закон сохранения импульса
При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой.
В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой. Этот фундаментальный закон природы называется законом сохранения импульса (ЗСИ). Следствием его являются законы Ньютона. Второй закон Ньютона в импульсной форме может быть записан следующим образом:
Как следует из данной формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:
Аналогично можно рассуждать для равенства нулю проекции силы на выбранную ось. Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:
Аналогичные записи можно составить и для остальных координатных осей. Так или иначе, нужно понимать, что при этом сами импульсы могут меняться, но именно их сумма остается постоянной. Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны.
Сохранение проекции импульса
Возможны ситуации, когда закон сохранения импульса выполняется только частично, то есть только при проектировании на одну ось. Если на тело действует сила, то его импульс не сохраняется. Но всегда можно выбрать ось так, чтобы проекция силы на эту ось равнялась нулю. Тогда проекция импульса на эту ось будет сохраняться. Как правило, эта ось выбирается вдоль поверхности по которой движется тело.
Многомерный случай ЗСИ. Векторный метод
В случаях если тела движутся не вдоль одной прямой, то в общем случае, для того чтобы применить закон сохранения импульса, нужно расписать его по всем координатным осям, участвующим в задаче. Но решение подобной задачи можно сильно упростить, если использовать векторный метод. Он применяется если одно из тел покоится до или после удара. Тогда закон сохранения импульса записывается одним из следующих способов:
В этих формулах буквой υ обозначены скорости тел до соударения, а буквой u обозначены скорости тел после соударения. Из правил сложения векторов следует, что три вектора в этих формулах должны образовывать треугольник. Для треугольников применяется теорема косинусов. Если правильно записать соответствующую теорему косинусов, то зачастую получается уравнение из которого можно найти нужную величину. Однако, иногда к правильно записанной теореме косинусов еще нужно будет добавить правильно записанный закон сохранения энергии (смотрите следующий раздел). В этом случае получится система уравнений из которых наверняка можно будет найти нужную величину.
Спутники планет Солнечной системы
Для ответов на вопросы по спутникам, формул, которые мы рассмотрели для планет, будет вполне достаточно. Необходимо также знать хотя бы основные спутники планет. Для Земли – это естественный спутник Луна. Марс имеет два спутника. Венера и Меркурий не имеют спутников. У Юпитера самыми известным являются: Ио, Европа, Ганимед и Каллисто – в порядке удаленности от Юпитера. Кроме того надо помнить, что Сатурн имеет так называемое кольцо, которое содержит множество объектов являющимися спутниками.
Обратите внимание на формулу гравитационного притяжения:
где \(G=6,67*{10}^{-11}\) – гравитационная постоянная; \(m\) – масса первого объекта, например, спутника; \(M\) – масса второго объекта, например, планеты; \(R\) – расстояние между их центрами; \(F\) – сила, с который оба объекта притягиваются друг к другу.
Как видно из формулы, сила гравитационного притяжения обратно пропорциональна расстоянию между объектами. Значит, как правило, чем ближе спутник находится к планете, тем сильнее он притягивается и тем меньше ее период обращения.
Пример 4. Спутники
«Турбоподготовка»
Подготовка к ЕГЭ по физике включает 12 онлайн-занятий в месяц в дружелюбной атмосфере. Плюс 16 домашних работ с жесткими сроками выполнения. Если не работаешь, то вылетаешь.
Онлайн-занятия ведутся в Zoom. Каждый урок около 1,5 часа, разбираются абсолютно все темы и прототипы заданий ЕГЭ. Смотреть вебинары можно с компьютера, планшета или телефона и задавать вопросы преподавателю в любой момент в чате.
Все необходимые материалы будут собраны в личном кабинете: расписание, записи занятий, конспекты, домашние задания, статистика. А Вконтакте создается общая беседа курса.
Домашние задания — тестовые и письменные. Первые проверяются автоматически, а вторые лично преподавателем. В качестве бонуса — в программу включены вебинары с психологом каждый месяц.
Можно ли подготовиться к ЕГЭ по физике самостоятельно
Самостоятельная подготовка к ЕГЭ по физике, конечно, возможна. Сегодня в открытом доступе есть множество пособий, видеороликов и конспектов для самостоятельной подготовки к ЕГЭ по физике. Но в таком количестве информации легко запутаться.
Проходить какую-либо тему с нуля самостоятельно крайне сложно. Во-первых, трудно найти мотивацию и силы, чтобы сесть за изучение непонятной пока информации, а каждая неудачно решённая задача будет усиливать желание бросить начатое дело. Во-вторых, без базового представления о непонятной теме трудно найти курсы и лекции, соответствующие вашему уровню. Однако все задачи первой части и пара задач во второй имеют четкие алгоритмы решения. Запомнить необходимый набор формул и научиться ими пользоваться вам поможет преподаватель. С нашими репетиторами вы систематизируете свои знания, узнаете много интересного из области современной физики и, возможно, определитесь с выбором будущей специальности.